Cationic Ruthenium Systems. Part 2. ${ }^{1}$ Synthesis, Characterization, and X-Ray Structure of Hydridopentakis(dimethylphenylphosphine)ruthenium(II) Hexafluorophosphate: A Discussion of the Effects of Steric Strains on the Reactivity of the Complex

By Terence V. Ashworth,* Magriet J. Nolte, and Eric Singleton, National Chemical Research Laboratory, Council for Scientific and Industrial Research, Pretoria 0001, Republic of South Africa
Michael Laing, Department of Chemistry, University of Natal, Durban 4001, Republic of South Africa

Abstract

The complex $\left[\mathrm{RuH}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{5}\right]\left[\mathrm{PF}_{6}\right]$ has been prepared by treatment of a methanolic solution of $\left[\mathrm{RuH}(\mathrm{cod})\left(\mathrm{NH}_{2}-\right.\right.$ $\left.\left.\mathrm{NMe}_{2}\right)_{3}\right]\left[\mathrm{PF}_{6}\right]$ (cod = cyclo-octa-1,5-diene) with $\mathrm{PMe}_{2} \mathrm{Ph}$ under argo.n and has been characterized by microanalytical, i.r., and ${ }^{1} \mathrm{H}$ n.m.r. data and by a three-dimensional X-ray structure determination. The colourless crystals of $\left[\mathrm{RuH}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{5}\right]\left[\mathrm{PF}_{6}\right] ., M=938$, are orthorhombic, space group $P 2_{1} 2_{1}{ }_{1}{ }_{1}, a=21.55(3), b=19.08(3), c=$ $10.38(2) \AA, U=4269 \AA^{3}, D_{\mathrm{m}}=1.48, D_{\mathrm{c}}=1.46 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4$. The structure has been solved by the heavyatom method and refined by least squares to $R 0.061$ for 1954 observed reflections collected on a diffractometer using graphite-monochromatized Mo- K_{α} radiation. The co-ordination about the ruthenium is distorted octahedral. The length of the bond to the phosphine trans to the hydride ligand ($R u-P 2.48 \AA$) is significantly longer than those to the other four phosphine ligands (mean Ru-P $2.40 \pm 0.01 \AA$). There is considerable strain within the cation caused by non-bonded repulsions between the methyl and phenyl groups on different phosphine ligands. A discussion of the build-up of steric strain in co-ordination complexes containing $\mathrm{PMe}_{2} \mathrm{Ph}$ ligands is presented.

A number of cationic hydride complexes of the type $\left[\mathrm{RuHL}_{5}\right]^{+}\left[1 ; \quad \mathrm{L}=\mathrm{P}(\mathrm{OMe})_{3},{ }^{2} \mathrm{P}(\mathrm{OEt})_{3},{ }^{2} \mathrm{PPh}(\mathrm{OMe}){ }_{2},{ }^{3}\right.$ and $\mathrm{PPh}_{2} \mathrm{H}^{4}$] have recently been prepared. These species have been shown ${ }^{2,4}$ by n.m.r. methods to possess a non-labile octahedral geometry with one unique axial and four equivalent equatorial ligands L. The stability of these complexes in solution seems to preclude their use as intermediates in further substitution or insertion reactions under mild conditions. However, attempts to increase the lability of ligands of (1) in solution by preparing similar complexes of the larger ligands $\mathrm{PPh}_{2}(\mathrm{OMe}), \mathrm{PPh}_{2}(\mathrm{OEt})$, and $\mathrm{PPh}(\mathrm{OEt})_{2}$ failed ${ }^{5}$ to produce characterizable products. During our investigations of routes to co-ordinatively unsaturated cationic ruthenium(II) hydrides we have prepared a number of complexes containing bulky tertiary phosphine ligands some of which have shown ${ }^{6}$ novel reactivity. One of the complexes isolated was of type (1), viz. [RuH$\left.\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{5}\right]\left[\mathrm{PF}_{6}\right]$ (2) and this salt was found to be highly reactive in solution and an ideal precursor to a large range of new ruthenium(II) complexes formed by ready loss of one or more of the phosphine ligands. The structures of several of these derivatives have already been determined: $\left[\mathrm{Ru}_{2} \mathrm{X}_{3} \mathrm{~L}_{6}\right]\left[\mathrm{PF}_{6}\right],\left(\mathrm{X}=\mathrm{Cl}^{7}\right.$ or $\left.\mathrm{OH}^{8}\right)$, $\left.\left[\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CMe}\right) \mathrm{L}_{4}\right]\left[\mathrm{PF}_{6}\right]^{9} \quad\left[\mathrm{RuH}\left(\mathrm{C}_{4} \mathrm{H}_{6}\right) \mathrm{L}_{3}\right]\left[\mathrm{PF}_{6}\right]\right]^{10} \quad[\mathrm{Ru}-$ $\left.\left\{\mathrm{S}_{2} \mathrm{C}(\mathrm{H}) \mathrm{PMe}_{2} \mathrm{Ph}\right\} \mathrm{L}_{3}\right]\left[\mathrm{PF}_{6}\right],{ }^{11}$ and $\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CH}\right) \mathrm{L}_{4}\right]\left[\mathrm{PF}_{6}\right]^{12}$ ($\mathrm{L}=\mathrm{PMe}_{2} \mathrm{Ph}$). The crystal structure of (2) was determined to discover to what extent steric factors influenced its reactivity, i.e. to discover whether the strain energy within the cation provided the driving force for the observed ligand dissociation in solution.

[^0]In order to obtain a meaningful estimate of the strain energy in (2) the various structural parameters related to the $\mathrm{PMe}_{2} \mathrm{Ph}$ ligand in different environments were compared. The above mentioned structure determinations provided a suitable set for this purpose. In addition, the arrangement of the substituents on the phosphorus atoms was of considerable interest since it would show to what degree the ligands could ' mesh' together, and thus provide a more precise understanding of the build-up of steric strain in co-ordination complexes containing similar ligands. Although the concept ${ }^{13}$ of ' cone angle' is frequently used to describe the steric size of tertiary phosphines and phosphites, it assumes conical symmetry about a M-P bond having a length $2.28 \AA$ and therefore predicts that co-ordination of five $\mathrm{PMe}_{2} \mathrm{Ph}$ ligands (cone angle of 127°) would not be possible unless significant distortion and meshing of the ligands takes place. Knowledge of the nature of these ligand distortions is of chemical importance since the synthesis of complexes which are highly reactive in solution via dissociative processes would be facilitated by choosing the ligands so that distortions within a molecule are at a maximum.

EXPERIMENTAL

Synthesis of $\left[\mathrm{RuH}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{5}\right]\left[\mathrm{PF}_{6}\right]$.-Argon-saturated methanol, which had been dried and distilled over magnesium methoxide, was used as solvent. Dimethylphenylphosphine was obtained commercially and was not further purified. Details of the preparation of $\left[\mathrm{RuH}(\operatorname{cod})\left(\mathrm{NH}_{2}-\right.\right.$ $\left.\left.\mathrm{NMe}_{2}\right)_{3}\right]\left[\mathrm{PF}_{6}\right] \quad($ cod $=$ cyclo-octa-1,5-diene) are reported elsewhere. ${ }^{1}$ The i.r. spectrum of $\left[\mathrm{RuH}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{5}\right]\left[\mathrm{PF}_{6}\right]\right.$

[^1]was recorded on a Perkin-Elmer 357 spectrophotometer and the ${ }^{1} \mathrm{H}$ n.m.r. spectrum on a Varian $\mathrm{A}-60 \mathrm{~A}$ machine.

In a typical synthesis $\left[\mathrm{RuH}(\operatorname{cod})\left(\mathrm{NH}_{2} \mathrm{NMe}_{2}\right)_{3}\right]\left[\mathrm{PF}_{6}\right]$ $(2.0 \mathrm{~g}, 4 \mathrm{mmol})$ was dissolved in boiling methanol $\left(100 \mathrm{~cm}^{3}\right)$ under an argon atmosphere and $\mathrm{PMe}_{2} \mathrm{Ph}(3.2 \mathrm{~g}, 22.8 \mathrm{mmol})$

Table 1

Final atomic co-ordinates with standard deviations in parentheses

Atom	X	Y	Z
Ru	$0.0711(1)$	$0.1274(1)$	$0.0815(1)$
$\mathrm{P}(1)$	0.0041 (2)	$0.0264(2)$	0.0838 8(5)
$\mathrm{P}(2)$	$0.1356(2)$	0.229 9(2)	$0.0819(5)$
$\mathrm{P}(3)$	0.0958 (2)	0.104 4(3)	-0.1395(5)
$\mathrm{P}(4)$	$0.0153(2)$	0.171 4(2)	$0.2616(5)$
$\mathrm{P}(5)$	$0.1564(2)$	0.0627 (3)	$0.1886(5)$
$\mathrm{P}(6)$	0.3790 (3)	0.2222 (3)	0.325 2(6)
$\mathrm{F}(1)$	$0.3782(20)$	$0.1522(9)$	$0.2872(20)$
F(2)	$0.3220(9)$	$0.2408(16)$	$0.2716(42)$
$\mathrm{F}(3)$	$0.4122(14)$	0.246 7(12)	$0.1972(20)$
$\mathrm{F}(4)$	$0.3981(13)$	$0.2982(10)$	0.3488 8(24)
$\mathrm{F}(5)$	0.438 6(13)	$0.2092(12)$	$0.3994(40)$
F(6)	0.3488 8(13)	0.1989 (22)	$0.4385(23)$
C(11)	$-0.0094(9)$	-0.015 5(10)	$0.2467(20)$
C(12)	0.028 5(9)	-0.055 8(10)	-0.001 1(19)
C(13)	-0.074 9(10)	$0.0310(10)$	$0.0188(19)$
$\mathrm{C}(131)$	-0.1183(9)	-0.0229(11)	$0.0503(20)$
$\mathrm{C}(132)$	-0.180 0(11)	-0.020 4(13)	-0.004 0(24)
$\mathrm{C}(133)$	-0.195 6(11)	0.0289 (12)	-0.0919(27)
C(134)	$-0.0921(8)$	$0.0833(9)$	-0.070 6(20)
$\mathrm{C}(135)$	-0.153 0(11)	0.079 6(12)	-0.131 6(23)
C(21)	0.1613 (9)	0.2719 (10)	0.2403 (20)
C(22)	$0.2137(9)$	$0.2167(9)$	0.009 6(20)
$\mathrm{C}(23)$	$0.1112(9)$	$0.3098(10)$	$0.0011(20)$
$\mathrm{C}(231)$	$0.0484(9)$	$0.3209(10)$	-0.035 6(20)
$\mathrm{C}(232)$	$0.0331(9)$	0.388 l (11)	-0.093 9(23)
$\mathrm{C}(233)$	$0.0745(12)$	$0.4382(12)$	-0.117 1(23)
$\mathrm{C}(234)$	$0.1417(12)$	$0.4272(13)$	-0.080 8(29)
$\mathrm{C}(235)$	$0.1564(10)$	0.3630 (12)	-0.019 8(22)
C(31)	$0.1509(10)$	$0.0323(11)$	-0.1870(22)
C(32)	$0.0305(9)$	$0.0793(10)$	-0.245 6(21)
C(33)	0.12588)	$0.1765(10)$	-0.245 5(20)
C(331)	0.083 4(10)	$0.2301(11)$	-0.272 0(20)
$\mathrm{C}(332)$	$0.1033(13)$	0.2869 (15)	-0.358 9(29)
$\mathrm{C}(333)$	$0.1654(11)$	0.279 9(13)	-0.405 7(27)
C(334)	$0.2016(10)$	0.230 6(12)	$-0.3835(21)$
$\mathrm{C}(335)$	$0.1858(11)$	0.171 6(13)	-0.300 5(24)
C(41)	$0.0064(9)$	$0.2679(10)$	$0.2762(19)$
C(42)	0.040 0(8)	0.151 l (10)	$0.4231(22)$
C(43)	$-0.0667(8)$	0.1506 (8)	$0.2693(17)$
C(431)	-0.094 5(10)	$0.1161(12)$	$0.3804(21)$
$\mathrm{C}(432)$	-0.1612(11)	0.107 6(12)	$0.3785(23)$
$\mathrm{C}(433)$	-0.195 6(11)	0.1298 8(14)	$0.2805(25)$
$\mathrm{C}(434)$	$-0.1704(11)$	$0.1607(12)$	$0.1751(24)$
C(435)	-0.1045(8)	$0.1728(10)$	$0.1682(19)$
C(51)	0.2043 (9)	$0.1089(10)$	$0.3106(19)$
$\mathrm{C}(52)$	$0.2221(9)$	$0.0316(10)$	$0.0884(24)$
C(53)	0.1443 (8)	$-0.0196(9)$	$0.2806(18)$
C(531)	$0.1510(9)$	-0.085 9(10)	$0.2209(19)$
$\mathrm{C}(532)$	0.1440 (9)	-0.147 7(10)	$0.2902(19)$
C(533)	0.1338 (9)	-0.143 7(10)	0.423 7(23)
C(534)	$0.1275(9)$	$-0.0783(11)$	$0.4831(19)$
C(535)	$0.1335(8)$	-0.0175(9)	$0.4119(21)$

was added. The solution was then heated under reflux for 20 min to give a red solution from which the product $\left[\mathrm{RuH}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{5}\right]\left[\mathrm{PF}_{6}\right]$ crystallized as colourless needles on cooling to room temperature. Cooling the solution to $0{ }^{\circ} \mathrm{C}$ induced further crystallization. The crystals were collected and washed with cold methanol and then with diethyl ether (yield $2.8 \mathrm{~g}, 74 \%$), m.p. $90-95{ }^{\circ} \mathrm{C}$ (decomp. in air) (Found: C, 51.6; H, 6.1. Calc. for $\mathrm{C}_{40} \mathrm{H}_{56} \mathrm{~F}_{6} \mathrm{P}_{6} \mathrm{Ru}$: C, 51.2; H, 6.0\%): i.r. (Nujol mull) $1900 \mathrm{~m} v\left(\mathrm{Ru}^{-H}\right)$,

[^2]$840 \mathrm{~s} \mathrm{~cm}^{1} v(\mathrm{P}-\mathrm{F}) ;{ }^{1} \mathrm{H}$ n.m.r. in degassed $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $34{ }^{\circ} \mathrm{C}$ $\tau 8.50$ (br s, unsymmetrical), at $-15{ }^{\circ} \mathrm{C}$, $\tau 8.10$ (br d) 8.50 (br s), and $14.25(\mathrm{~m}$, hydride; appeared to be two overlapping $1: 4: 6: 4: 1$ quintets $\left[J\left(P_{\text {trans. }}-H\right) 30, J\left(P_{\text {cis. }}-H\right)\right.$ 10 Hz].

Suitable crystals were obtained by crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ under an argon atmosphere. One of dimensions $0.2 \times 0.2 \times 0.3 \mathrm{~mm}$ was used for data collection. Unit-cell constants were determined from leastsquares refinement of 25 values of 20 measured on a Philips four-circle diffractometer of the N.P.R.L., C.S.I.R.

Crystal Data. $-\mathrm{C}_{40} \mathrm{H}_{56} \mathrm{~F}_{6} \mathrm{P}_{6} \mathrm{Ru}, M=938$, Orthorhombic, space group $P 2_{1} 2_{1} 2_{1}, \quad a=21.55(3), \quad b=19.08(3), \quad c=$ $10.38(2) \AA, U=4269 \AA^{3}, \quad D_{\mathrm{m}}=1.48 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4$, $D_{\mathrm{c}}=1.46 \mathrm{~g} \mathrm{~cm}^{-3}$.

Intensities were measured with graphite-monochromatized $\mathrm{Mo}-K_{\alpha}$ radiation ($\lambda 0.7107 \AA$) over the range θ $3-25^{\circ}$. The $\omega-2 \theta$ scan mode was used; each reflection was scanned for 30 s and the same time was taken to accumulate the background count. Of the 2276 intensities measured, 1954 were classified as observed; $I>2 \sigma(I)$. Standard reflections $[(2 \overline{2} 1),(08 \overline{6})$, and $(138 \overline{3})]$, remeasured every hour, changed respectively by $+0.4,+0.4$, and -2.0% during data collection (41 h). Lorentz and polarization corrections were applied; corrections for extinction and absorption were considered unnecessary $\left[\mu\left(\mathrm{Mo}-K_{\alpha}\right)\right.$ $\left.6.40 \mathrm{~cm}^{-1}\right]$.

All the calculations were made on an IBM 360/65 computer with programs from the ' X-Ray' system. ${ }^{14}$ The positions of the $R u$ and P atoms were deduced from a Patterson map. A Fourier synthesis, phased on these atoms, revealed the positions of the remaining non-hydrogen atoms. After initial refinement of positional parameters, individual isotropic temperature factors, and one overall scale factor by full-matrix least squares, the Ru, P, and F atoms were made anisotropic and the structure was then refined to convergence: $R 0.061$ for the observed intensities. Unit weights were used throughout the refinement. The scattering factors were those of Cromer and Mann ${ }^{15}$ for neutral atoms corrected only for the real part of the ano-malous-dispersion effect. Observed and calculated structure factors and the thermal parameters from the final least-squares cycle are listed in Supplementary Publication No. SUP 22061 (16 pp.).* Final atomic co-ordinates are listed in Table 1 , bond lengths (uncorrected for thermal motion) and angles in Tables 2 and 3 , and selected intramolecular non-bonded separations in Table 4. Figure 1 gives the numbering system, Figure 2 the contacts between two of the phenyl rings and the hydrogen atom bonded to the ruthenium, and Figure 3 the projections of groups of facial phosphine ligands on to the plane of the three phosphorus atoms.

RESULTS AND DISCUSSION

The crystal structure consists of closely packed discrete cations and anions. Apart from four distances in the range 3.18- $3.46 \AA$ between F atoms of a hexafluorophosphate anion and C atoms of the neighbouring cations, all the intermolecular distances between nonhydrogen atoms are greater than $3.5 \AA$. Since these

[^3]J.C.S. Dalton
contact distances are similar to those found in related ${ }^{\mathbf{7 , 1 0}, 11}$ relatively unstrained compounds, the large molecular distortions within the cation of (2) (see later)

Table 2
Bond lengths (\AA) with probable errors in parentheses

$\mathrm{Ru}-\mathrm{P}(1)$	2.41(1)	$\mathrm{Ru}-\mathrm{P}(2)$	2.40(1)
$\mathrm{Ru}-\mathrm{P}(3)$	2.40(1)	$\mathrm{Ru}-\mathrm{P}(4)$	2.38(1)
$\mathrm{Ru}-\mathrm{P}(5)$	2.48(1)		
$\mathrm{P}(1)-\mathrm{C}(11)$	1.89(2)	$\mathrm{P}(1)-\mathrm{C}(12)$	1.87(2)
$\mathrm{P}(2)-\mathrm{C}(21)$	1.91 (2)	$\mathrm{P}(2)-\mathrm{C}(22)$	1.86(2)
$\mathrm{P}(3)-\mathrm{C}(31)$	1.88(2)	$\mathrm{P}(3)-\mathrm{C}(32)$	1.85(2)
$\mathrm{P}(4)-\mathrm{C}(41)$	1.86(2)	$\mathrm{P}(4)-\mathrm{C}(42)$	1.80(2)
$\mathrm{P}(5)-\mathrm{C}(51)$	1.86(2)	$\mathrm{P}(5)-\mathrm{C}(52)$	1.85(2)
Mean P-C(alkyl) 1.86 (range $\pm 0.05 \AA$)			
$\mathrm{P}(1)-\mathrm{C}(13)$	1.83(2)	$\mathrm{P}(2)-\mathrm{C}(23)$	1.82(2)
$\mathrm{P}(3)-\mathrm{C}(33)$	1.88(2)	$\mathrm{P}(4)-\mathrm{C}(43)$	1.81(2)
$\mathrm{P}(5)-\mathrm{C}(53)$	1.86(2)		
Mean P-C(phenyl) 1.84 (range $\pm 0.034 \AA$)			
Mean phenyl $\mathrm{C}-\mathrm{C}$ distances for individual rings to:			
$\mathrm{P}(1) 1.42(3)$; $\mathrm{P}(2) 1.43(3)$; $\mathrm{P}(3) 1.40(3)$			
$\mathrm{P}(4) 1.41$ (3)	$\mathrm{P}(5) 1.39(3)$ (range within each ring $\pm 0.06 \AA$)		
$\mathrm{P}(6)-\mathrm{F}(1)$	1.39(2)	$\mathrm{P}(6)-\mathrm{F}(2)$	$1.39(3)$
$\mathrm{P}(6)-\mathrm{F}(3)$	1.58(2)	$\mathrm{P}(6)-\mathrm{F}(4)$	1.53(2)
$\mathrm{P}(6)-\mathrm{F}(5)$	1.52(3)	$\mathrm{P}(6)-\mathrm{F}(6)$	1.42(3)
Mean P-F 1.47 (range $\pm 0.10 \AA$)			

cannot be due to lattice forces. In addition, it has previously been shown,* from the crystal structures of two different salts of the same cation, that packing factors have a negligible effect on the conformations of co-ordinated tertiary phosphorus groups.

The co-ordination geometry of the cation is distorted
Table 3
Bond angles (${ }^{\circ}$) with probable errors in parentheses

$\mathrm{P}(1)-\mathrm{Ru}-\mathrm{P}(2)$	178(1)	$\mathrm{P}(2)-\mathrm{Ru}-\mathrm{P}(4)$	90(1)
$\mathrm{P}(1)-\mathrm{Ru}-\mathrm{P}(3)$	90(1)	$\mathrm{P}(2)-\mathrm{Ru}-\mathrm{P}(5)$	89(1)
$\mathrm{P}(1)-\mathrm{Ru}-\mathrm{P}(4)$	88(1)	$\mathrm{P}(3)-\mathrm{Ru}-\mathrm{P}(4)$	159(1)
$\mathrm{P}(1)-\mathrm{Ru}-\mathrm{P}(5)$	92(1)	$\mathrm{P}(3)-\mathrm{Ru}-\mathrm{P}(5)$	100(1)
$\mathrm{P}(2)-\mathrm{Ru}-\mathrm{P}(3)$	91(1)	$\mathrm{P}(4)-\mathrm{Ru}-\mathrm{P}(5)$	101(1)
$\mathrm{Ru}-\mathrm{P}(\mathbf{1})-\mathrm{C}(11)$	116(1)	$\mathrm{Ru}-\mathrm{P}(2)-\mathrm{C}(21)$	121(1)
$\mathrm{Ru}-\mathrm{P}(1)-\mathrm{C}(12)$	120(1)	$\mathrm{Ru}-\mathrm{P}(2)-\mathrm{C}(22)$	114(1)
$\mathrm{Ru}-\mathrm{P}(1)-\mathrm{C}(13)$	121(1)	$\mathrm{Ru}-\mathrm{P}(2)-\mathrm{C}(23)$	121(1)
$\mathrm{Ru}-\mathrm{P}(3)-\mathrm{C}(31)$	122(1)	$\mathrm{Ru}-\mathrm{P}(4)-\mathrm{C}(41)$	118(1)
$\mathrm{Ru}-\mathrm{P}(3)-\mathrm{C}(32)$	117(1)	$\mathrm{Ru}-\mathrm{P}(4)-\mathrm{C}(42)$	121(1)
$\mathrm{Ru}-\mathrm{P}(3)-\mathrm{C}(33)$	120(1)	$\mathrm{Ru}-\mathrm{P}(4)-\mathrm{C}(43)$	117(1)
$\mathrm{Ru}-\mathrm{P}(5)-\mathrm{C}(51)$	119(1)	$\mathrm{Ru}-\mathrm{P}(5)-\mathrm{C}(53)$	123(1)
$\mathrm{Ru}-\mathrm{P}(5)-\mathrm{C}(52)$	118(1)		
	Mean Ru-P-C 119(1)		
$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(12)$	96(1)	$\mathrm{C}(21)-\mathrm{P}(2)-\mathrm{C}(22)$	98(1)
$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(13)$	102(1)	$\mathrm{C}(21)-\mathrm{P}(2)-\mathrm{C}(23)$	98(1)
$\mathrm{C}(12)-\mathrm{P}(1)-\mathrm{C}(13)$	97 (1)	$\mathrm{C}(23)-\mathrm{P}(2)-\mathrm{C}(22)$	101(1)
$\mathrm{C}(31)-\mathrm{P}(3)-\mathrm{C}(32)$	98(1)	$\mathrm{C}(41)-\mathrm{P}(4)-\mathrm{C}(42)$	100(1)
$\mathrm{C}(31)-\mathrm{P}(3)-\mathrm{C}(33)$	99(1)	$\mathrm{C}(41)-\mathrm{P}(4)-\mathrm{C}(43)$	$96(1)$
$\mathrm{C}(32)-\mathrm{P}(3)-\mathrm{C}(33)$	96(1)	$\mathrm{C}(42)-\mathrm{P}(4)-\mathrm{C}(43)$	102(1)
$\mathrm{C}(51)-\mathrm{P}(5)-\mathrm{C}(52)$	96(1)	$\mathrm{C}(51)-\mathrm{P}(5)-\mathrm{C}(53)$	97(1)
$\mathrm{C}(52)-\mathrm{P}(5)-\mathrm{C}(53)$	97(1)		
Mean C-P-C 98(1)			

octahedral with two pairs of trans-phosphines and a unique phosphine which is trans to the 'vacant ' position occupied by the hydride ligand.

The mean $\mathrm{Ru}-\mathrm{P}$ bond length ($2.40 \AA$) for the two pairs of trans-phosphine ligands falls in the upper end of the

[^4]range of observed values in ruthenium(II) complexes (see Table 6) but is similar to those found ${ }^{9}$ for the pair of trans-phosphine groups in $\left[\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CMe}\right)\left(\mathrm{PMe}_{2}-\right.\right.$ $\left.\mathrm{Ph})_{4}\right]^{+}$(mean $\mathrm{Ru}-\mathrm{P} 2.425 \AA$). The $\mathrm{Ru}-\mathrm{P}$ bond length ($2.48 \AA$) to the remaining phosphine ligand is the longest yet observed in this class of complex, and although it is shorter than the $2.54 \AA$ estimated by Guggenberger ${ }^{16}$ it is longer than the $2.43 \AA$ for a single bond estimated

Table 4
Selected non-bonded interatomic distances (\AA)

$\mathrm{C}(13) \cdots \mathrm{C}(43)$	3.47	$\mathrm{C}(13) \cdots \mathrm{C}(435)$	3.18
$\mathrm{C}(11) \cdots \mathrm{C}(43)$	3.41	$\mathrm{C}(11) \cdots \mathrm{C}(53)$	3.33
$\mathrm{C}(11) \cdots \mathrm{C}(431)$	3.41	$\mathrm{C}(134) \cdots \mathrm{C}(32)$	3.21
$\mathrm{C}(134) \cdots \mathrm{C}(434)$	3.40	$\mathrm{C}(134) \cdots \mathrm{C}(435)$	3.02
$\mathrm{C}(21) \cdots \mathrm{C}(51)$	3.33	$\mathrm{C}(21) \cdots \mathrm{C}(41)$	3.36
$\mathrm{C}(23) \cdots \mathrm{C}(331)$	3.27	$\mathrm{C}(22) \cdots \cdot \mathrm{C}(33)$	3.35
$\mathrm{C}(22) \cdots \mathrm{C}(325)$	3.39	$\mathrm{C}(31) \cdots \mathrm{C}(52)$	3.25

from Pauling's covalent radii. The shortening of metalphosphorus distances below that obtained from Pauling's covalent radii has often been cited as evidence for $\mathrm{M}-\mathrm{P}$ π bonding, even when the ligands are relatively strong σ donors such as $\mathrm{PMe}_{2} \mathrm{Ph}$. It appears, therefore, that π bonding contributes very little to the bond between ruthenium and the unique phosphine in the present case.
The $\mathrm{P}-\mathrm{Ru}-\mathrm{P}$ angles for the two pairs of trans ligands differ considerably $[\mathrm{P}(1)-\mathrm{Ru}-\mathrm{P}(2) 178$ and $\mathrm{P}(3)-\mathrm{Ru}-\mathrm{P}(4)$

Figure 1 The numbering system of $\left[\mathrm{RuH}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{5}\right]\left[\mathrm{PF}_{6}\right]$
159°]. $\mathrm{P}-\mathrm{M}-\mathrm{P}$ angles similar in size to the latter have been observed in other hydridophosphine complexes of transition metals ${ }^{17}$ and have been attributed ${ }^{17}$ to the small van der Waals radius of the hydrogen atom. The effect is well illustrated ${ }^{18}$ by the three meridional triphenylphosphine groups in $\left[\mathrm{OsBrH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}\right]$ where the $\mathrm{P}-\mathrm{Os}-\mathrm{P}$ angle for the trans pair of P atoms is 158°. The repulsions between the phenyl rings on the different

[^5]phosphine ligands is relieved by the trans pair folding towards the hydrido-atom. However, the overcrowding is so severe in $\left[\mathrm{RuH}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{5}\right]^{+}$that the strains cannot be relieved by a simultaneous reduction of the $\mathrm{P}-\mathrm{Ru}-\mathrm{P}$ angle of both trans pairs of P atoms. The $\mathrm{P}(1)$ and $\mathrm{P}(2)$ atoms are prevented from bending away from $P(5)$ [as do $\mathrm{P}(3)$ and $\mathrm{P}(4)$] because the ortho -H atoms of $C(135)$ and $C(231)$ are in contact with the hydrido-atom on the ruthenium (see Figure 2) and cannot be further compressed.* The resulting strain is reflected in the $\mathrm{Ru}-\mathrm{P}-\mathrm{C}\left(\right.$ phenyl) angles being opened up to 121° in these two $\mathrm{PMe}_{2} \mathrm{Ph}$ groups.

The high reactivity of $\left[\mathrm{RuH}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{5}\right]\left[\mathrm{PF}_{6}\right]$ is apparently caused by the large compression strains which

Figure 2 Stereoscopic projection of $\left[\mathrm{RuH}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{5}\right]\left[\mathrm{PF}_{6}\right]$ on to the planc of $\mathrm{H}(1), \mathrm{H}(231)$, and $\mathrm{H}(135)$ to illustrate the contacts between these hydrogen atoms. Some atoms have been omitted for clarity
result from the short interligand separations. In order to obtain some estimate of the energy associated with these interactions the angular distortions and $\mathrm{C} \cdot \mathrm{C}$ contact distances within the ligands were compared with those found in the related complexes containing three and four $\mathrm{PMe}_{2} \mathrm{Ph}$ ligands. These parameters are listed in Table 5. (The structural changes which lead to the relief of steric strain have been discussed in the reports of several crystal structures containing phosphine ligands in trans, ${ }^{19}$ mer, ${ }^{20}$ and square-planar ${ }^{21}$ arrangements.)

In the related complexes ${ }^{\mathbf{7}, 10,11}$ containing three $\mathrm{PMe}_{2} \mathrm{Ph}$ ligands arranged facially, one $\mathrm{Ru}-\mathrm{P}-\mathrm{C}(\mathrm{Me})$ angle always exceeds 120°. The methyl groups involved have an identical steric environment in each case [see Figure 3(a)]. The $\mathrm{P}-\mathrm{C}$ bonds to these methyl groups are approximately parallel to each other and are perpendicular to the plane of the three facial P atoms. The Me \cdots Me separations lie between 3.5 and $3.8 ~ \AA$, significantly less than $4.0 \AA$ which is twice the usual effective van der Waals radius of a methyl group. In

[^6]$\left\lfloor\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CMe}\right)\left(\mathrm{PMe}_{\mathbf{2}} \mathrm{Ph}\right)_{4}\right\rfloor^{\prime}\lfloor$ Figure $\mathbf{3}(b)\rfloor$ there are two sets of phosphine ligands with facial geometry, ${ }^{9}$ both of which exhibit enlarged $\mathrm{Ru}-\mathrm{P}-\mathrm{C}$ angles. One set [A in Figure $3(b)$] has the same arrangement of methyl groups as was found in the three-ligand cases, while the second set (B) is different. In set B, only the trans-axial phosphine ligand, $P(1)$, is sterically similar to the phosphines described above. Atom $\mathrm{P}(4)$ of the cisequatorial pair has its phenyl ring pointing parallel to the methyl group on $\mathrm{P}(1)$, which has the largest $\mathrm{Ru}-\mathrm{P}-\mathrm{C}$ angle (126°), with the result that the $\mathrm{Ru}-\mathrm{P}(4)-\mathrm{C}$ (phenyl) angle is also enlarged (121°). Atom $\mathrm{P}(3)$ of the equatorial pair has both its methyl groups involved in close contacts, a different methyl in each facial arrangement,

hence the $\mathrm{Ru}-\mathrm{P}-\mathrm{C}$ angle of each of the methyl groups on $\mathrm{P}(3)$ exceeds 120°. The $\mathrm{Ru}-\mathrm{P}-\mathrm{C}$ angle to the phenyl ring, which is not involved in short $\mathrm{C} \cdots \mathrm{C}$ contacts, is only 108°. The $\mathrm{Me} \cdots \mathrm{C}($ phenyl) and $\mathrm{Me} \cdots \mathrm{Me}$ separations (ca. $3.4 \AA$) for this facial set of ligands are shorter than those of the other set. Quite clearly there is an increased compression strain in this arrangement of two adjacent facial sets of $\mathrm{PMe}_{2} \mathrm{Ph}$ ligands. It is evident that this type of internal compression strain drives the dissociation and rearrangement of cis- $\left[\mathrm{RuCl}_{2}-\right.$ $\left.\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{4}\right]$ to form the triply bridged dimer $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{3}\right.$ $\left.\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{6}\right] \mathrm{Cl}^{22}$ Two sets of highly strained adjacent facial arrangements are thus eliminated and simultaneously replaced by two well separated relatively unstrained arrangements. The rearrangement of the orange dithioformato-complex $\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CH}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{4}\right]^{+}$ to the purple isomer ${ }^{11}\left[\mathrm{Ru}\left\{\mathrm{S}_{2} \mathrm{C}(\mathrm{H}) \mathrm{PMe}_{2} \mathrm{Ph}\right\}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right]^{+}$ is also caused by relief of these interligand strains.

The four facial sets in $\left[\mathrm{RuH}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{5}\right]^{+}$[Figure $3(c)]$ all differ in varying degrees from the simple arrange-

[^7]ment found in the three-ligand complexes. In all sets, relatively large $\mathrm{Ru}-\mathrm{P}-\mathrm{C}$ angles are observed (see Table

(a)

(b)

(c)

Figure 3 (a) Projections of the two sets of facial phosphine ligands in $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{6}\right]\left[\mathrm{PF}_{6}\right]$. (b) Projections of the two adjacent sets of facial phosphine ligands in $\left[\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CMe}\right)\right.$ $\left.\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{4}\right]\left[\mathrm{PF}_{6}\right]$. (c) Projections of the four adjacent sets of facial phosphine ligands in $\left[\mathrm{RuH}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{5}\left[\mathrm{PF}_{6}\right]\right.$
3) indicating that strain energy is being taken up in angular distortions (see Tables 3-6). Figure 1 shows
that to a fair approximation the set of four ligands, $\mathrm{P}(1)-\mathrm{P}(4)$, has two-fold symmetry. The phenyl rings on $\mathrm{P}(3)$ and $\mathrm{P}(4)$ twist about the $\mathrm{P}-\mathrm{C}$ bonds in the same sense until they make contact with the phenyl rings on $P(2)$ and $P(1)$ respectively. This configuration, together with the distortions arising from the close contacts between the two o-hydrogen atoms and the hydride ligand (described above), determine the arrangement of the substituents attached to the phosphorus atoms in the cation. One of the facial projections of $\mathrm{PMe}_{2} \mathrm{Ph}$ ligands in (2), that involving $\mathrm{P}(2), \mathrm{P}(4)$, and $\mathrm{P}(5)$, is similar to the arrangement found in the simplest cases: parallel $\mathrm{P}-\mathrm{Me}$ bonds, close $\mathrm{Me} \cdots \mathrm{Me}$ contacts, and large $\mathrm{Ru}-\mathrm{P}-\mathrm{C}($ methyl $)$ angles. The other three arrangements have phenyl rings parallel to the $\mathrm{P}-\mathrm{Me}$ bonds; these involve large numbers of short $\mathrm{C} \cdot \mathrm{C}$ separations, and the Me groups involved in the close contacts generally have large $\mathrm{Ru}-\mathrm{P}-\mathrm{C}$ angles. So as to achieve the minimum repulsion energy, one of the facial sets adopts the preferred arrangement (with one $\mathrm{P}-\mathrm{Me}$ bond on each group standing approximately parallel to the plane of the P atoms) and then the fourth and fifth $\mathrm{PMe}_{2} \mathrm{Ph}$ ligands each adjust their orientation so that their Me and Ph groups mesh with the groups on the first facial set to give the most energetically favourable compromise.

It is not possible to compare directly this structure with one containing a meridional configuration of $\mathrm{PMe}_{2} \mathrm{Ph}$ ligands about a ruthenium atom because no crystal structure of this type has as yet been reported. However, the structure of the anion mer- $\left[\mathrm{RuCl}_{3}\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{3}\right]^{-}$ is known ${ }^{23}$ and its geometry can be usefully compared with those of $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{6}\right]^{+},\left[\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CMe}\right)\left(\mathrm{PMe}_{2^{-}}\right.\right.$ $\left.\mathrm{Ph})_{4}\right]^{+}$, and $\left[\mathrm{RuH}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{5}\right]^{+}$. The arrangement of the groups attached to the P atoms differs completely from that found in the facial complexes. It is now the phenyl groups that stand approximately parallel to each other, and the large $\mathrm{Ru}-\mathrm{P}-\mathrm{C}$ bond angles are those involving the phenyl C atoms (119, 121, and 122°). This is clearly seen in Figure 3 of ref. 23. The shortest contacts are between the C atoms of the phenyl ring on $\mathrm{P}(7)$ and the methylene C atoms on $\mathrm{P}(8)(3.29,3.43$, and $3.48 \AA$) and between the phenyl rings on $P(8)$ and $P(9)$ (3.26, 3.40 , and $3.42 \AA$). There are no methylenemethylene contacts. It is clear that the internal stresses in the mer case are small, with the energy being absorbed both in the angle strains associated with the phenyl groups and in the $\mathrm{P}-\mathrm{Ru}-\mathrm{P}$ angle of 168°.

In order to estimate the angular-strain energy in the ligands of $\left[\mathrm{RuH}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{5}\right]^{+}$, the relevant angles in the $\mathrm{PMe}_{2} \mathrm{Ph}$ ligands of trans- $\left[\mathrm{Pt}\left(\mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{OMe}\right)_{2}\left(\mathrm{PMe}_{2}-\right.\right.$ $\left.\mathrm{Ph})_{2}\right]^{24}$ were used as typical of a co-ordinated $\mathrm{PMe}_{2} \mathrm{Ph}$ ligand suffering negligible angular distortions. The angles are $\mathrm{M}-\mathrm{P}-\mathrm{C}$ (methyl) 117 and $116^{\circ}, \mathrm{M}-\mathrm{P}-\mathrm{C}$ (phenyl) 113°, and the mean $\mathrm{Ru}-\mathrm{P}-\mathrm{C}$ angle is 115°. If a 5° deviation from this mean value requires ${ }^{25} c a$.
${ }^{23}$ K. A. Raspin, J. Chem. Soc. (A), 1969, 461.
${ }^{24}$ K. H. P. O'Flynn and W. S. McDonald, Acta Cryst., 1976, B32, 1596.
${ }^{25}$ A. I. Kitaigorodsky, ' Molecular Crystals and Molecules,' Academic Press, New York, 1973, p. 188.
$0.2 \mathrm{kcal} \mathrm{mol}^{-1}$ (greater than 0.1 , less than 0.4) then the strain energy may be calculated. The sum of the Ru-$\mathrm{P}-\mathrm{C}$ angular deviations in (2) is 55°, equivalent to $c a$. $2.2 \mathrm{kcal} \mathrm{mol}^{-1}$.*

It is evident from the range of $\mathrm{M}-\mathrm{P}-\mathrm{C}$ and $\mathrm{C}-\mathrm{P}-\mathrm{C}$
substituents attached to the phosphorus atom in ligands such as PEt_{3} and $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$ apparently ${ }^{21 a}$ cannot ' fold back' to relieve interligand close contacts because of the intraligand repulsions. Thus $\mathrm{PMe}_{2} \mathrm{Ph}$ groups offer considerably less steric repulsion than PEt_{3} in a complex

Table 5
Structural parameters * related to $\mathrm{PMe}_{2} \mathrm{Ph}$ ligands in different steric environments

Parameter	Complex ($\mathrm{L}=\mathrm{PMe}_{2} \mathrm{Ph}, \mathrm{L}^{\prime}=\mathrm{PEt}_{2} \mathrm{Ph}$)			
	$m e r$ - $\left[\mathrm{RuCl}_{3} \mathrm{~L}_{3}\right]^{-}$	$f a c-\left[\mathrm{Ru}_{2} \mathrm{Cl}_{3} \mathrm{~L}_{6}\right]^{+}$	$\left[\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CMe}\right) \mathrm{L}_{4}\right]^{+}$	[$\mathrm{RuHL}_{5}{ }^{\text {] }}$
$\begin{gathered} \mathrm{P}-\mathrm{M}-\mathrm{P} \\ \text { angle }\left({ }^{\circ}\right) \end{gathered}$	$\begin{aligned} & 95,96 \\ & 168 \end{aligned}$	$\begin{aligned} & 93,94,94,95 \\ & 98,98 \end{aligned}$	$\begin{aligned} & 91,91,97,99 \\ & 166 \end{aligned}$	$\begin{aligned} & 90(6), 100(2) \\ & 159,178 \end{aligned}$
$\mathrm{M}-\mathrm{P}-\mathrm{C}$	112, 113, 119	112, 113(3), 114(3)	$(113,113,126)(2)$	
angle (${ }^{\circ}$)	114, 117, 121 111, 118, 122	$\begin{aligned} & 116,117(2), 118 \\ & 119,122(5), 124 \end{aligned}$	(108, 122, 122)(2)	114, 116(3), 117, 118(2) $119,120(4), 121(2), 123$
$\begin{aligned} & \mathrm{C}-\mathrm{P}-\mathrm{C} \\ & \text { angles }\left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & 97,101,102 \\ & 100,103,101 \\ & 97,102,103 \end{aligned}$	$\begin{aligned} & 97,99(5) \\ & 100(5), 101(4), \\ & 102(3) \end{aligned}$	$\begin{aligned} & 97,101,105(2) \\ & 100,100,103(2) \end{aligned}$	$\begin{aligned} & 95,96(3), \\ & 97(5), 98,99(2) \\ & 101(2), 102 \end{aligned}$
	Mean 101	Mean 100	Mean 101	Mean 98
M-P distances (\AA)	2.26, 2.36	2.28(2)	2.30(2)	2.38, 2.40(2), 2.41
	2.39	$\begin{aligned} & 2.29(2) \\ & 2.30(2) \end{aligned}$	2.42(2)	2.48
C. . C non-bonded contacts	3.3-3.8	3.5-3.8	3.4(3)	3.0, 3.1, 3.2(3).
			3.5	3.3(5), 3.4(4)

[^8]angles (see Table 5) that a $\mathrm{PMe}_{2} \mathrm{Ph}$ ligand can suffer considerable angular distortions. In addition, groups of these ligands can ' mesh' together as shown by the short interligand contact distances (Table 4) and the projections in Figure 3(c). These properties cause the
in spite of the cone angles proposed for $\mathrm{PMe}_{2} \mathrm{Ph}\left(127^{\circ}\right)$ and $\mathrm{PEt}_{3}\left(130^{\circ}\right)$ which suggest similar steric effects for these two ligands.

A final point to be considered is whether the long bond to $\mathrm{P}(5)$ in $\left[\mathrm{RuH}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{5}\right]\left[\mathrm{PF}_{6}\right]$ is due to the structural

Table 6
Ruthenium-phosphorus bond lengths (\AA) for linear groups with the $\mathrm{X}-\mathrm{Ru}-\mathrm{P}$ angle $\geqslant 155^{\circ}$

Complex	X	$\mathrm{Ru}-\mathrm{P}$	Ref.
$\left[\mathrm{Ru}_{2} \mathrm{Cl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{6}\right]^{+}$	Cl	2.28-2.30	7
$\left[\mathrm{Ru}_{2}(\mathrm{OH})_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{6}\right]^{+}$	OH	2.27-2.30	8
$\left[\mathrm{RuH}\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right]^{+}$	C	2.32, 2.34	10
$\left[\mathrm{Ru}\left\{\mathrm{S}_{2} \mathrm{C}(\mathrm{H}) \mathrm{PMe}_{2} \mathrm{Ph}\right\}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right]^{+}$	$\stackrel{\mathrm{H}}{\mathrm{S}}$	2.28 $2.28,2.31$	11
		2.20	
$\left[\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CMe}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{4}\right]^{+}$	\mathbf{P}	2.42, 2.43	8
	O	2.30, 2.31	
$\left[\mathrm{RuH}\left(\mathrm{O}_{2} \mathrm{CMe}\right)\left(\mathrm{PPh}_{3}\right)_{3}\right]$	P	2.35, 2.36	a
$\left[\mathrm{RuH}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{5}\right]^{+}$	P	2.38-2.41	
	H	2.48	
$\left[\mathrm{RuH}\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)(\mathrm{dmpe})_{2}\right]^{\bullet}$	H	2.33	27
	$\left(\sigma-\mathrm{C}_{10} \mathrm{H}_{7}\right)$	2.30	
$\left[\left\{\mathrm{RuH} \text { (dmpe) }\left[\mathrm{Me}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PMe}\left(\sigma-\mathrm{CH}_{2}\right)\right]\right\}_{2}\right]^{\sigma}$	$\stackrel{\mathrm{P}}{\mathrm{H}}$	$2.28,2.30$ 2.31	28
	$\sigma-\mathrm{CH}_{2}$	2.27	
	P	2.29, 2.32	

effective size of the ligand to be smaller than would be associated with its ' cone angle '. It would be expected that similar distortions could occur in other co-ordinated $\mathrm{PR}_{2} \mathrm{Ph}$ ligands ($\mathrm{R}=\mathrm{Et}, \mathrm{Pr}^{\mathrm{n}}, \mathrm{Bu}^{\mathrm{n}}$, etc.) and that the interligand repulsions caused by increasing the bulk of the alkyl groups would determine the stability of complexes containing these ligands. In contrast, the alkyl

[^9]trans influence of the hydrido-ligand. Lengthening of the metal-phosphorus bond trans to a hydrido-ligand has been observed in $\left[\mathrm{OsBrH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}\right]^{18}$ and $\left[\mathrm{IrH}_{2}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}\right]\left[\mathrm{SiF}_{5}\right] .{ }^{26}$ Three structures of ruthenium(II) complexes of this type have been determined ${ }^{10,27,28}$ and have $\mathrm{Ru}-\mathrm{P}$ distances in the 2.28 -

[^10]$2.33 \AA$ region for the bond trans to the hydrido-ligand. All three have relatively unstrained ligand environments. These limited data suggest that the $\mathrm{Ru}-\mathrm{P}$ distance of the bond trans to a hydride ligand would be in the region of $2.30 \AA$, i.e. similar to that of the bond trans to Cl^{-}in complexes with little steric crowding. Ru-P lengths of bonds trans to a variety of ligands are given in Table 6.

Thus it appears that the lengthening of the $\mathrm{Ru}-\mathrm{P}(5)$ bond in $\left[\mathrm{RuH}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{5}\right]^{+}$is a steric effect caused by the many and large repulsions between the methyl and phenyl groups on this and the other ligands, and is not caused by any electronic effects of the hydride ligand.
[6/2203 Received, 1st December, 1976]

[^0]: ${ }^{1}$ Part 1, T. V. Ashworth, E. Singleton, and J. Hough, J.C.S. Dalton, preceding paper.
 ${ }^{2}$ D. A. Couch and S. D. Robinson, Inorg. Chim. Acta, 1974, 9, 39.
 ${ }^{3}$ J. J. Hough and E. Singleton, J.C.S. Chem. Comm., 1972, 371.
 ${ }^{4}$ J. R. Sanders, J. Chem. Soc. (A), 1971, 2991.
 ${ }^{5}$ D. A. Couch and S. D. Robinson, Inorg. Chem., 1974, 13, 456.
 ${ }^{6}$ T. V. Ashworth and E. Singleton, J.C.S. Chem. Comm., 1976, 705.
 ${ }^{7}$ M. Iaing and I.. Pope, Acta Cryst., 1976, B32. 1547.

[^1]: ${ }^{8}$ T. V. Ashworth, M. J. Nolte, and E. Singleton, in preparation.
 ${ }^{9}$ T. V. Ashworth, M. J. Nolte, and E. Singleton, J.C.S. Dalton, 1976, 2184.
 ${ }_{10}$ T. V. Ashworth, E. Singleton, and M. Laing, J. Organometallic Chem., 1976, 117, Cl13.
 ${ }^{11}$ T. V. Ashworth, E. Singleton, and M. Laing, J.C.S. Chem. Comm., 1976, 875.
 ${ }_{12}$ M. Laing, Acta Cryst., in preparation.
 ${ }^{13}$ C. A. Tolman, J. Amer. Chem. Soc., 1970, 92, 2956; C. A. Tolman, W. C. Seidel, and L. W. Gosser, ibid., 1974, 96, 53; I. E. Manzer and C. A. Tolman, ibid., 1975, 97 , 1955.

[^2]: * For details see Notices to Authors No. 7, J.C.S. Dalton, 1976, Index issue.

[^3]: 14 J. M. Stewart, G. J. Kruger, H. Ammon, C. H. Dickinson, and S. R. Hall, Comput. Sci. Tech. Rep. TR-192, 1972, University of Maryland.

 15 D. T. Cromer and J. B. Mann, Acta Cryst., 1968, A24, 321.

[^4]: * M. Nolte, E. Singleton. and M. Laing, J.C.S. Dalton, 1976, 1979.
 ${ }^{16}$ L. J. Guggenberger, Inorg. Chem., 1973, 12, 1317.

[^5]: ${ }^{17}$ H. D. Kaesz and R. B. Saillant, Chem. Rev., 1972, 72, 231, 279.

 18 P. L. Orioli and L. Vaska, Proc. Chem. Soc., 1962, 333.

[^6]: * The hydride-atom position $\mathbf{H}(\mathbf{1})$ was calculated using a distance of $1.7 \AA$ to the metal and assuming that it was symmetrically placed with respect to the four cis-phosphorus atoms. Although the van der Waals radii ($1.2 \AA$) of $\mathrm{H}(\mathbf{1})$ overlaps those of $\mathrm{H}(135)$ and $H(231)$ respectively, the respective contact distances of 2.14 and $2.16 \AA$ are acceptable; see, for example, G. R. Clark, B. W. Skelton, and T. N. Waters, Inorg. Chim. Acta, 1975, 12, 235.

[^7]: 19 B. J. Davis and J. A. Ibers, Inorg. Chem., 1971, $10,578$.
 ${ }^{20}$ L. Manojlović-Muir, J. Chem. Soc. (A), 1971, 2796.
 ${ }_{21}$ (a) N. W. Alcock and P. G. Leviston, J.C.S. Dalton, 1974, 1834; (b) G. R. Clark, B. W. Skelton, and T. N. Waters, J. Organometallic Chem., 1975, 85, 375.
 ${ }_{22}$ P. W. Armit, A. S. F. Boyd, and T. A. Stephenson, J.C.S. Dalton, 1975, 1663.

[^8]: * Numbers in parentheses refer to the number of similar sets of parameters. It should be noted that as $\mathrm{M}-\mathrm{P}-\mathrm{C}$ angles open, compressions increase (see $P-M-P$ and $C-P-C$ angles) and separations become smaller across the Table.

[^9]: * Throughout this paper: $1 \mathrm{cal}=4.184 \mathrm{~J}$.
 ${ }^{26}$ P. Bird, J. F. Harrod, and K. A. Than, J. Amer. Chem. Soc., 1974, 96, 1222.

[^10]: ${ }^{27}$ S. D. Ibekwe, B. T. Kilbourn, U. A. Raeburn, and D. R. Russell, Chem. Comm., 1969, 433.
 ${ }^{28}$ F. A. Cotton, D. L. Hunter, and B. A. Frenz, Inorg. Chim. Acta, 1975, 15, 155.

